Cours

[Cours][twocolumns]

Corrigées du manuel scolaire

[Exercice manuel scolaire][twocolumns]

Séries d'exercices corrigés

[Série d'exercices corrigés][twocolumns]

Devoirs corrigés

[devoirs corrigés][twocolumns]

Articles recents

Correction - Exercice 01 page 208 - Equations et inéquations du premier degré à une inconnue


Correction - Exercice 01 page 208 - Equations et inéquations du premier degré à une inconnue

1ère année secondaire 

Equations et inéquations du premier degré à une inconnue 

Exercice 01 page 208 


Résoudre dans \(\mathbb{R}\) les équations suivantes :

a) \(\frac{1}{5}x-\frac{1}{2} = \frac{2}{3}x+\frac{1}{3}\).
\(\frac{1}{5}x-\frac{1}{2} = \frac{2}{3}x+\frac{1}{3}\) \(\Rightarrow\) 
\(\frac{1}{5}x-\frac{2}{3}x = \frac{1}{3}+\frac{1}{2}\) \(\Rightarrow\) 
\(\frac{3}{15}x-\frac{10}{15}x = \frac{2}{6}+\frac{3}{6}\) \(\Rightarrow\) 
\(-\frac{7}{15}x = \frac{5}{6}\) \(\Rightarrow\) 
\(x = \frac{\frac{5}{6}}{-\frac{7}{15}}\) \(\Rightarrow\) 
\(x = \frac{5}{6}\times -\frac{15}{7}\) \(\Rightarrow\) 
\(x = -\frac{75}{42}= -\frac{25}{14}\).

\(S_\mathbb{R}=\{-\frac{25}{14}\}\).

b) \(\frac{x+1}{2}-3=\frac{x-1}{3}-2\).
\(\frac{x+1}{2}-3=\frac{x-1}{3}–2\) \(\Rightarrow\) 
\(\frac{x+1}{2}-\frac{x-1}{3}=-2+3\) \(\Rightarrow\) 
\(\frac{3(x+1)}{6}-\frac{2(x-1)}{6}=1\) \(\Rightarrow\) 
\(\frac{3x+3}{6}-\frac{2x-2}{6}=\frac{6}{6}\) \(\Rightarrow\) 
\(3x+3-2x+2=6\) \(\Rightarrow\) 
\(3x-2x=6-5\) \(\Rightarrow\) 
\(x = 1\).

\(S_\mathbb{R}=\{1\}\).

c) \(x\sqrt{3}-2x-1=0\).
\(x\sqrt{3}-2x–1=0\) \(\Rightarrow\) 
\(x\sqrt{3}-2x=1\) \(\Rightarrow\) 
\((\sqrt{3}-2)x=1\) \(\Rightarrow\) 
\(x=\frac{1}{\sqrt{3}-2}\).

\(S_\mathbb{R}=\{\frac{1}{\sqrt{3}-2}\}\).

d) \(2(x-1)=\sqrt{2}(x+1)-1\).
\(2(x-1)=\sqrt{2}(x+1)-1\) \(\Rightarrow\) 
\(2x-2=\sqrt{2}x+\sqrt{2}-1\) \(\Rightarrow\) 
\(2x-\sqrt{2}x=\sqrt{2}-1+2\) \(\Rightarrow\) 
\((2-\sqrt{2})x=\sqrt{2}+1\) \(\Rightarrow\)
\(x=\frac{\sqrt{2}+1}{2-\sqrt{2}}\) \(\Rightarrow\)

\(S_\mathbb{R}=\{\frac{\sqrt{2}+1}{2-\sqrt{2}}\}\).

e) \(\sqrt{3}-5(x–\sqrt{3})=\frac{1-x}{2}\).
\(\sqrt{3}-5(x–\sqrt{3})=\frac{1-x}{2}\) \(\Rightarrow\) 
\(\sqrt{3}-5x+5\sqrt{3}=\frac{1}{2}-\frac{1}{2}x\) \(\Rightarrow\) 
\(-5x+\frac{1}{2}x=\frac{1}{2}-6\sqrt{3}\) \(\Rightarrow\) 
\(-\frac{10}{2}x+\frac{1}{2}x=\frac{1}{2}-\frac{2(6\sqrt{3})}{2}\) \(\Rightarrow\) 
\(-\frac{9}{2}x=\frac{1-12\sqrt{3}}{2}\) \(\Rightarrow\) 
\(-9x=1-12\sqrt{3}\) \(\Rightarrow\) 
\(x=-\frac{1-12\sqrt{3}}{9}\) \(\Rightarrow\) 
\(x=\frac{-1+12\sqrt{3}}{9}\) \(\Rightarrow\) 
\(x=\frac{12\sqrt{3}-1}{9}\).

\(S_\mathbb{R}=\{\frac{12\sqrt{3}-1}{9}\}\).

f) \(\frac{x-1}{4}+\frac{2x+3}{2}=\frac{2x+1}{3}-\frac{3x+12}{6}\).
\(\frac{x-1}{4}+\frac{2x+3}{2}=\frac{2x+1}{3}-\frac{3x+12}{6}\) \(\Rightarrow\) 
\(\frac{3(x-1)}{12}+\frac{6(2x+3)}{12}=\frac{4(2x+1)}{12}-\frac{2(3x+12)}{12}\) \(\Rightarrow\) 
\(3x-3+12x+18=8x+4-6x-24\) \(\Rightarrow\) 
\(3x+12x-8x+6x=4-24+3-18\) \(\Rightarrow\) 
\(13x=-35\) \(\Rightarrow\) 
\(x=-\frac{35}{13}\).

\(S_\mathbb{R}=\{-\frac{35}{13}\}\).

g) \((3x-4)(x+1)=3x^2+4\).
\((3x-4)(x+1)=3x^2+4\) \(\Rightarrow\) 
\(3x^2+3x-4x-4=3x^2+4\) \(\Rightarrow\) 
\(3x^2-3x^2+3x-4x=4+4\) \(\Rightarrow\) 
\(-x=8\) \(\Rightarrow\)  
\(x=-8\).

\(S_\mathbb{R}=\{-8\}\).

h) \(|x|=-2\).
\(S_\mathbb{R}=\{\}=\varnothing\).
Car \(-2\) est négatif et la valeur absolue d'un nombre réel est toujours positif.

i) \(|2x-5|=7\).
\(|2x-5|=7\) \(\Rightarrow\) 
\(2x-5=7\) ou \(2x-5=-7\) donc \(2x=12\) ou \(2x=-2\) d'où \(x=6\) ou \(x=-1\).

\(S_\mathbb{R}=\{-1;6\}\).

j) \(|3-x|=\pi-4\).
\(S_\mathbb{R}=\{\}=\varnothing\).
Car \(\pi-4\) est négatif et la valeur absolue d'un nombre réel est toujours positif.

Aucun commentaire: